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Abstract
The polarization processes in a system of double quantum dots coupled in series with electrodes
are studied in the limit of sequential tunnelling. The Coulomb interactions of accumulated
charges on both quantum dots and the competition between dot–dot and dot–electrode coupling
are responsible for the non-monotonic filling of each dot, which leads to a change of the sign of
the polarization as a function of bias voltage. We show that this dynamical switching
polarization effect is common and observable in various multidot systems.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Electrical transport through double quantum dots (2QDs)
systems have been recently widely studied both experimen-
tally [1–8] and theoretically [9–15] because of their interesting
physical properties like e.g. negative differential conductance,
single-electron pump, Pauli spin blockade, singlet–triplet tran-
sitions, competition between the Kondo effect and the antifer-
romagnetic correlations between spins on the 2QDs, etc. Fur-
thermore, the single-electron devices based on 2QDs can be
used e.g. to build current standards, room temperature memory,
thermometry and charge sensing devices [16]. It was also pro-
posed to use 2QDs as quantum gates and the building blocks of
future quantum computers [17–21]. In addition, it was pointed
out that the charging of the QD and the occupation of a single-
particle level can show some rather complex, non-monotonic
behaviour as a function of gate voltage [22], deviating con-
siderably from the standard Coulomb blockade (CB) picture:
one-by-one filling. This complex behaviour originates from
the competition between the dot–electrode coupling and the
intrinsic energy scales of the QD, i.e. its charging energy and
level spacing. It is worth noting, that one can also find non-
monotonic filling of the energy levels (as a function of bias
voltage) in 2QDs capacitively coupled in parallel [23]. The
competition between dot–electrode coupling and Coulomb in-
teraction should also play an important role in 2QDs coupled
in series to the electrodes.

In this paper we will study transport properties of serially
coupled 2QDs in a sequential tunnelling regime. We predict
that in the system a new interesting phenomenon can occur,

which we call dynamical polarization switching (DPS). This is
an inversion of the polarization of the system from the negative
to the positive value (or vice versa) as a bias voltage rises. The
non-monotonic occupation of QD has been recently studied by
König and Gefen [24] and by Kostyrko and Bułka [25]. Both
papers treat the electronic transport in the coherent regime.
In the König and Gefen paper the non-monotonic filling is
due to a change of the density of states and due to changes
of the spectral weight near resonant transmission. Kostyrko
and Bułka found, that non-monotonic filling occurs due to the
pinning of the resonant level to the Fermi level.

The paper is organized as follows: in section 2 we describe
the formalism used for calculation of current, an average
occupation of a QD and polarization. The results of our
computations are presented in section 3. First we show that for
certain values of parameters the DPS effect can occur. Then
we discuss the dependence of this effect on the macroscopic
parameters of the device, such as capacitance and resistance.
The symmetrical system is mainly considered, i.e. with equal
couplings to the left and right electrodes as well as equal
charging energies of both quantum dots. Afterwards we will
discuss the origin of the DPS effect. In section 4 final remarks
are given, where asymmetrical systems and the influence of
gate voltages on DPS will also be discussed.

2. Description of the model and calculation of the
electronic transport in sequential tunnelling regime

We consider a system (presented in figure 1), composed of two
quantum dots connected in series with electrodes. We assume
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Figure 1. Schematic view of two serially coupled quantum dots.
Each tunnel junction is characterized by two parameters: a
capacitance Cij and a resistance Rij . VL, VR are voltages applied to
the electrodes, �i j are the effective tunnelling rates, and n1, n2 denote
a number of additional electrons on first (QD1) and second (QD2)
quantum dot.

that the electrodes are ideal and the potentials in the QDs are
constant, so the voltage drops occur only on the tunnel barriers,
which we have modelled by the resistances Ri j . From the
Kirchhoff’s laws, the voltage drops on the left, the middle and
the right tunnel junctions are:

VL1 = −e
C12 + C2R

Cs
n1 − e

C12

Cs
n2 + C12C2R

Cs
VL − C12C2R

Cs
VR,

(1)

V12 = e
C2R

Cs
n1 − e

CL1

Cs
n2 + CL1C2R

Cs
VL − CL1C2R

Cs
VR, (2)

V2R = e
C12

Cs
n1 + e

CL1 + C12

Cs
n2 + CL1C12

Cs
VL − CL1C12

Cs
VR,

(3)
where Ci j is the capacitance of the junction i j (i j =
{L1, 12, 2R}), Cs = CL1C12 + CL1C2R + C12C2R, n1 (n2)
denotes a number of additional electrons on QD1 (QD2) and
e is an electron charge (e < 0). The charging energies of the
dots are Ech

1 = e2(C12 + C2R)/Cs, Ech
2 = e2(CL1 + C12)/Cs

and the electrostatic coupling energy Ech
12 = e2C12/Cs. The

coupling energy Ech
12 is the change in the energy of one dot

when an electron is added to the other dot [2].
In order to calculate transfer rates through the junctions

the knowledge of the free energy of the system is needed.
The free energy consists of the electrostatic energies of the
charged capacitors in the system and the potential energies of
the electrodes, and can be calculated for 2QDs system from the
formula (see e.g. [26]):

F(n1, n2, nL, nR) = 1
2

(
CL1V 2

L1 + C12V 2
12 + C2RV 2

2R

)

− QLVL − QRVR, (4)

where QL = QL1+nLe and QR = −Q2R+nRe are the charges
on the left and right electrode, respectively. nR (nL) is the
number of electrons transferred from the left (right) electrode
to the QD1 (QD2) and the charges on the capacitors Ci j are
Qi j = Ci j Vi j (i j = L1, 12, 2R). The change of free energy
due to electron tunnelling through the junction L1 from the left
electrode to QD1 can be written as a difference

�FL1(n1, n2; n1 + 1, n2) =
Fi(n1, n2, nL, nR) − Ff(n1 + 1, n2, nL + 1, nR), (5)

where Fi(n1, n2, nL, nR) and Ff(n1 +1, n2, nL +1, nR) are the
free energies of the initial and final states, respectively. One

can see from equations (4) and (5) that �FL1(n1, n2; n1 +
1, n2) does not depend on nL and nR. An electron can be
transferred through the junction (e.g. junction L1), when the
corresponding free energy difference between initial (i) and
final (f) states �FL1(n1, n2; n1 + 1, n2) > 0. The tunnelling
rates through the junctions can be calculated on the basis of the
method for a single QD with a continuous electronic density
of states (DOS), described e.g. in the paper [27]. Applying
the procedure to our system, one can obtain the following
tunnelling rate for the transfer of one electron from the left
electrode to the first QD through the junction L1:

�L1(n1, n2; n1 + 1, n2) = �FL1(n1, n2; n1 + 1, n2)

e2 RL1

×
[

1 − exp

(
−�FL1(n1, n2; n1 + 1, n2)

kBT

)]−1

, (6)

where the tunnelling resistance RL1 of the junction L1 is
given by 1/RL1 = 2π/h̄|ML1|2 DL D1 and DL is DOS in
the left electrode, while D1 is DOS in QD1. It is assumed
that DOS as well as matrix element ML1 (which describes
transfer of an electron) are constant around the Fermi energy.
Other tunnelling rates can be derived similarly. It is important
to note that equation (6) is true when the electrons in the
electrodes and on each dot are in thermal equilibrium even
if the whole system of 2QDs is out of equilibrium. The
assumption about thermal equilibrium on each quantum dot
leads to conclusions that the charging energy Ech

i of each
QD is constant. Moreover the inelastic relaxation time τin

on each QD is shorter than the time between successive
tunnelling events τI = e/I [28]. This relation implies that
the corresponding resistances Ri j of the tunnel junctions (i j =
L1, 12, 2R) are much larger than the quantum resistance RQ =
h/2e2 and the electronic transport is dominated by incoherent,
sequential tunnelling processes [29–31], whereas higher order
processes (cotunnelling) are neglected. In addition temperature
broadening is assumed to be strong, i.e. h�i j � kBT .

The state of the system at time t can be described by the
probability p(n1, n2; t) that the dots QD1 and QD2 have n1

and n2 additional electrons. The probability is normalized,
so that condition

∑
n1,n2

p(n1, n2; t) = 1 is fulfilled. The
time evolution of the probability p(n1, n2; t) depends on
the tunnelling rates �i j(n1, n2; n′

1, n′
2). For each probability

p(n1, n2; t) one can write the master equation, which has the
following form:

d

dt
p(n1, n2; t) =
− [

�L1(n1, n2; n1 + 1, n2) + �1L(n1, n2; n1 − 1, n2)

+ �12(n1, n2; n1 − 1, n2+1) + �21(n1, n2; n1+1, n2−1)

+ �2R(n1, n2; n1, n2 − 1)

+ �R2(n1, n2; n1, n2 + 1)
]

p(n1, n2; t)

+ �L1(n1 − 1, n2; n1, n2)p(n1 − 1, n2; t)

+ �1L(n1 + 1, n2; n1, n2)p(n1 + 1, n2; t)

+ �12(n1 + 1, n2 − 1; n1, n2)p(n1 + 1, n2 − 1; t)

+ �21(n1 − 1, n2 + 1; n1, n2)p(n1 − 1, n2 + 1; t)

+ �2R(n1, n2 + 1; n1, n2)p(n1, n2 + 1; t)

+ �R2(n1, n2 − 1; n1, n2)p(n1, n2 − 1; t). (7)
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Figure 2. (a) Current, (b) polarization and charge accumulation
plotted as a function of the bias voltage V . The charge 〈n1〉 and 〈n2〉
accumulated at QD1 and QD2 are presented as a dash and a dash–dot
curve, the total charge accumulated in the system is 〈n1 + n2〉 = 0
(dot line), the polarization of the system P = 2〈n1〉 (solid curve).
The parameters are: RL1 = R2R = 10 M�, R12 = 50 M�,
CL1 = C2R = 5 aF, C12 = 2 aF, VL = 0, VR = V, T ≈ 2.32 K. Thin
horizontal lines denote threshold voltages: V th

1 ≈ 32 mV (solid),
V th

2 ≈ 56 mV (dash), and V th
3 ≈ 136 mV (dot) and switch voltage

V switch ≈ 60 mV (dash–dot).

In the stationary state, due to the current conservation rule,
the average currents flowing through each junction are equal
IL1 = I12 = I2R = I , and:

I = −e
∑

n1,n2

[
�L1(n1, n2; n1 + 1, n2)

− �1L(n1, n2; n1 − 1, n2)
]

p(n1, n2), (8)

where the steady state probability p(n1, n2) can be determined
from equation (7) with the left-hand side equal to zero. In the
steady state, the average value of any physical quantity X can
be expressed by

〈X〉 =
∑

n1,n2

X (n1, n2)p(n1, n2), (9)

where X (n1, n2) is defined in the 2D space of states {(n1, n2)}.

3. Anomalous negative polarization

It is well known that the current, which flows through 2QDs
strongly depends on various parameters of the system, in
particular the macroscopic capacitances Ci j and the resistances
Ri j . The capacitances Ci j determine the charging energies of
the individual quantum dots Ech

1 , Ech
2 and their electrostatic

coupling energy Ech
12, while resistances Ri j are responsible for

the current intensity.

Figure 3. Voltage dependence of the probabilities p(n1, n2) for the
states, which are relevant to transport. The parameters are the same
as in figure 2.

In this section we consider a symmetrical system with the
capacitance CL1 = C2R and the resistance RL1 = R2R. In
addition we assume that R12 is larger than RL1 and R12/RL1 =
5. Figure 2(a) shows the current–voltage characteristic for our
system. For small voltages, the current cannot flow through the
2QDs device due to the Coulomb blockade effect. The current
starts to flow above a threshold voltage V th

1 ≈ 32 mV. The
current monotonically growths with increasing bias voltage V .
The small bend, one can see in the I –V characteristic, is due
to opening of new transport channels.

Intuition suggests that with increasing V QD1 should be
monotonically charged by electrons (because RL1 < R12),
while electrons from QD2 should outflow (because R12 >

R2R). However, figure 2(b) shows that QDs are charged
non-monotonically. At the threshold voltage V th

1 , electrons
start to outflow from QD1, so the corresponding charge
accumulation decreases (〈n1〉 < 0, see figure 2(b)). At the
same time electrons are accumulated on QD2, so 〈n2〉 > 0
(see figure 2(b)). This causes negative polarization P =
〈n1 − n2〉. For higher voltages, above V th

2 , the charge
accumulation on QD1 increases monotonically, while that on
QD2 monotonically decreases (see figure 2(b)). Then, the
polarization P switches from a negative to a positive value
for V switch > V th

2 . Simultaneously the charge accumulations
〈ni 〉 also change sign. Moreover, in the steady state, the
average potential drop 〈VL1〉 on the junction L1 should be the
same as the average potential drop 〈V2R〉 on the junction 2R,
because of the symmetry of the system. So, one can find from
equations (1)–(3) that the charge accumulations 〈n1〉 and 〈n2〉
fulfil condition 〈n1〉 = −〈n2〉, the total charge accumulation
Q = 〈n1 + n2〉 = 0 and the polarization P = 2〈n1〉 for any V .

To explain the polarization switching effect presented in
figure 2 we performed analysis of the occupation probabilities
p(n1, n2) versus the bias voltage V . One can see from figure 3,
that for small voltages V < V th

1 , the probability p(0, 0) that
both dots are empty is equal to one, and current cannot flow
through the system. When the voltage exceeds the threshold
voltage V th

1 then the current I begins to flow through the
system. The probabilities p(0, 1), p(−1, 0) and p(−1, 1)

rise, which result from opening new charge channels (0, 1),

3
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(−1, 0) and (−1, 1), respectively. These states correspond to
the condition n2 > n1, so electronic transport through them
is responsible for the negative polarization seen in figure 2(b).
When the voltage exceeds V th

2 new transport channels (with
n1 > n2) (1, 0), (0,−1) and (1,−1) are opened. It is clearly
seen in figure 3 as an increase of the probabilities p(1, 0),
p(0,−1) and p(1,−1). Hence, states (1, 0), (0,−1) and
(1,−1) are responsible for the positive polarization P . For
bias voltages higher than V switch the states (1, 0), (0,−1)

and (1,−1) are favoured, which leads to the increase of the
polarization P above zero (see figure 2(b)). In figure 2 one can
also see an intense change of the polarization around V th

3 . This
effect is due to opening of new charge channels, e.g. (1,−2),
(2,−1) and (2,−2). The new charge states also give positive
contribution to the polarization P . It is worth noting, that
due to the symmetry of the system, p(−1,−1) = p(1, 1),
p(−1, 0) = p(0, 1) and p(0,−1) = p(1, 0), see figure 3.

Let us now analyse microscopic processes, which
are responsible for the non-monotonic behaviour of the
polarization P seen in figure 2(b). Transport through the
1D array of quantum dots occurs when the free energy
difference �Fi j of each tunnelling event in the sequence
(which transfer an electron from one electrode to another) is
positive. For example, to transfer an electron from the left
to the right electrode through 2QDs system three free energy
differences have to be positive: �FL1(n1, n2; n1 + 1, n2),
�F12(n1 + 1, n2; n1, n2 + 1) and �F2R(n1, n2 + 1; n1, n2).
These free energy differences correspond to threshold voltages
V th

L1(n1, n2; n1 + 1, n2), V th
12(n1 + 1, n2; n1, n2 + 1) and

V th
2R(n1, n2 + 1; n1, n2), which can be calculated from

conditions �Fi j (n1, n2; n′
1, n′

2) = 0. So, one can say that
the particular sequence of tunnelling events is activated for the
threshold voltage:

V th = max
{
V th

L1(n1, n2; n1 + 1, n2),

V th
12(n1 + 1, n2; n1, n2 + 1), V th

2R(n1, n2 + 1; n1, n2)
}
.

(10)

Equation (10) has been derived for the sequence, in which at
first one electron jumps from the left electrode to the QD1.
However, one can obtain similar formulae for other sequences,
e.g. when at first an electron is transferred through junction
12 between dots. We have found, from equation (10) for
this sequence, that the threshold voltage V th

1 = −e(1/CL1 +
1/C2R)/2 ≈ 32 mV is determined by the free energy
difference �F12(0, 0; −1, 1). This means, that an electron
can be transferred through the tunnel junction 12 from the
QD1 to the QD2 with tunnelling rate �12(0, 0; −1, 1). One
can say that a new charge channel (−1, 1) is activated and
available for the tunnelling events, which is seen in figure 3
as a rapid increase of the occupation probability p(−1, 1)

at V = V th
1 . Moreover, because the free energy difference

�F21(−1, 1; 0, 0) is negative for V > V th
1 , the reverse

processes, in which an electron is transferred from QD2 to
QD1, vanish (i.e. �21(−1, 1; 0, 0) → 0 for V > V th

1 ). Further,
because the free energy differences �FL1(−1, 1; 0, 1) and
�F2R(−1, 1; −1, 0) are positive, the occupation probabilities
p(0, 1) and p(−1, 0) rise (see figure 3), so additional two
transport channels (0, 1) and (−1, 0) open at V th

1 . It means

Figure 4. 2D space of states (n1, n2) contributing to transport and
polarization at low and moderate voltages V . Black points denote
available channels. Equilibrium (0, 0) is marked by O. Arrows show
relevant tunnelling processes �i j (n1, n2; n′

1, n′
2) between initial

(n1, n2) and final (n′
1, n′

2) states. The paths are numbered by I, II
(stroke lines), III (vertical lines), IV (horizontal lines). The picture is
related to figure 3.

that in the second step either an electron can tunnel from the
left electrode to the QD1 (through the junction L1) with the
rate �L1(−1, 1; 0, 1) or an electron from the QD2 will jump
to the right electrode (through the junction 2R) with the rate
�2R(−1, 1; −1, 0). In the last step of the sequence, the system
returns to its initial state (0, 0). It can be done via an electron
tunnelling (with the rate �2R(0, 1; 0, 0)) through the junction
2R from QD2 to the right electrode or via an electron transfer
(with the rate �L1(−1, 0; 0, 0)) from the left electrode to QD1.
Summarizing, above V th

1 one electron can be transferred from
the left to the right electrode over the sequence of the following
tunnelling processes (denoted by →), which couple adjacent
states in the 2D space of states (n1, n2): (0, 0) → (−1, 1) →
(0, 1) → (0, 0) or (0, 0) → (−1, 1) → (−1, 0) → (0, 0),
see path I and II in figure 4 (solid lines). Both sequences give a
negative contribution to the polarization P . It is worth noting,
that the process �12(0, 0; −1, 1) is crucial, because it initiates
both sequences shown schematically above.

The polarization P decreases up to the voltage V th
2 =

−e(1/C12 + 1/C2R)/2 ≈ 56 mV (see figure 2) when the
new channels (1, 0), (0,−1) and (1,−1) open (see figure 3).
The threshold voltage V th

2 is determined similarly to V th
1 .

We have calculated free energy differences and found that
�FL1(0, 0; 1, 0) and �F2R(0, 0; 0,−1) become positive at the
threshold voltage V th

2 while �F21(0, 0; 1,−1) is negative. It
means that at first an electron from the left electrode can
tunnel to QD1 (with the rate �L1(0, 0; 1, 0)) or an electron
from QD2 will be transferred to the right electrode (with the
rate �2R(0, 0; 0,−1)). In addition, above V th

2 both backward
processes �1L(1, 0; 0, 0) and �R2(0,−1; 0, 0) vanish, so an
electron cannot simply return from the states (1, 0) and (0,−1)

to the ground state (0, 0). In the next step, either an electron
from QD2 will tunnel (with the rate �2R(1, 0; 1,−1)) to

4
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Figure 5. Voltage dependence of the current (solid curve), the charge
accumulations on QD1— 〈n1〉 (dash curve), QD2—〈n2〉 (dash–dot
curve) and the total charge accumulated on the system—〈n1 + n2〉
(dot curve). The polarization P = 2〈n1〉. The parameters are:
RL1 = R2R = 50 M�, R12 = 10 M�, CL1 = C2R = 2 aF,
C12 = 5 aF, VL = 0, VR = V, T ≈ 2.32 K.

the right electrode through the junction 2R or an electron
from the left electrode can be transferred (with the rate
�L1(0,−1; 1,−1)) to QD1 through the junction L1. At the
end, the system can return from the state (1,−1) to the
initial state (0, 0), (with the rate �12(1,−1; 0, 0)). In the
case one electron can be transferred from the left to the
right electrode over the sequence of the following tunnelling
processes (denoted by →): (0, 0) → (1, 0) → (1,−1) →
(0, 0) or (0, 0) → (0,−1) → (1,−1) → (0, 0), see path III
and IV in figure 4 (dash lines). Since, these two sequences give
a positive contribution to P , the polarization starts to increase
for voltages higher then V th

2 . Moreover, for V > V switch the
sequences, which give positive contribution to the polarization
are preferable and total polarization P become positive. It is
worth noting, that at V switch, when switching of polarization
occurs, new channels are not open. The effect is due to
competition between different tunnelling rates.

Apart from the polarization switching from negative to
positive values (seen in figure 2(b)) we have found an inverse
effect, when the polarization P changes its sign from positive
to negative. This situation is presented in figure 5, where
the inverse change of polarization is correlated with reverse
behaviour of accumulated charges 〈n1〉 and 〈n2〉. The effect
can be analysed in a similar way. One can find the first
threshold voltage from the equation (10). In the case,
the first threshold voltage is determined by the free energy
difference �FL1(0, 0; 1; 0) = �F2R(0, 0; 0; −1) and it is
V th

1 = −e(1/C12 + 1/C2R)/2. It means that at first, channels
(1, 0) and (0,−1) are activated and transport occurs through
sequences shown schematically by dashed lines in figure 4.
Now, the effect of the dynamical switching of polarization
occurs when charging energies Ech

1 , Ech
2 ≈ 46.7 mV are

larger than the coupling energy Ech
12 ≈ 33.4 mV. However,

the resistance of the dot–dot tunnel barrier is smaller than
resistances of the dot–electrode, R12/RL1(2R) = 0.2. For
high bias voltages the polarization decreases and achieves a
large negative value. This means, that in the high voltage
range, more electrons are localized on QD2 than on QD1.

Figure 6. Contour plot of the polarization P = 〈n1 − n2〉 as a
function of the bias voltage V and the dot–dot capacitance C12.
The other parameters are the same as those in figure 2.

Figure 7. Contour plot of the polarization P = 〈n1 − n2〉 as a
function of the bias voltage V and the dot–dot resistance R12. The
other parameters are the same as those in figure 2.

This effect of charge accumulation is due to the asymmetry
between R12 and RL1, R2R. However, for smaller voltages
V th

1 < V < 80 mV the charge accumulation is reversed,
i.e. more additional electrons are localized on QD1 than on
QD2.

The results presented in figures 2 and 5 have been
calculated for quite different, but particular sets of macroscopic
capacitances Ci j and resistances Ri j . It is also interesting to
know how the DPS effect depends on the coupling energy
Ech

12 (on C12) or transparency of the dot–dot tunnel barrier
(related with R12). The results of our computations are
shown on the contour plots in figures 6 and 7. It is obvious
that the electrostatic coupling energy Ech

12 increases with an
increase of C12, while the both charging energies Ech

1 and
Ech

2 decrease. However, always Ech
12 < Ech

1 , Ech
2 . For small

C12 � CL1, C2R (e.g. for the dashed line in figure 6) the
polarization is always negative and decreases monotonically
with an increase of V , while for large C12 � CL1, C2R (e.g. for
the dotted line in figure 6) the polarization is always positive
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and monotonically increases with V . The non-monotonic
behaviour of the polarization occurs (e.g. for the dash–dot
line in figure 6) for values of C12, which belong to the
narrow interval 1.75 aF < C12 < 3.75 aF. It means that
the effect of DPS is suppressed for very small or very large
electrostatic dot–dot couplings. It is worth noting, that in this
case, the resistance of the dot–dot barrier R12 = 50 M�

is larger than the dot–electrode resistances RL1 = R2R =
10 M�.

Next, we study how the change of the dot–dot resistance
R12 influences the polarization. It is assumed that now
all capacitances are constant and CL1 = C2R = 5 aF,
C12 = 2 aF. The results are presented in figure 7. One can
see that for resistance R12 up to ≈30 M� the polarization
is always negative (e.g. if one follows the dashed line in
figure 7). For higher values of R12 the polarization changes
non-monotonically from negative to positive values (e.g. for
the dotted line in figure 7). Because Ri j does not have
any influence on the threshold voltages, the width of the
negative polarization region as a function of voltage is almost
constant for large R12 � RL1, R2R. However, with an
increase of R12 the intensity of the negative polarization
decreases. The results presented in figure 7 depend on
the competition between tunnelling through channels with
a positive and a negative contribution to the polarization.
The channels with positive contribution to the polarization
P dominate only for large R12 � RL1, R2R and large V .
For small R12 � RL1, R2R the channels contributing to
negative polarization are more strongly activated over the
voltage range.

It is worth noting that temperature can also strongly affect
the polarization of the system. For example we will analyse the
influence of the temperature on the results presented in figure 2.
One can find from equation (6), that for very low temperature
T (kBT � Ech

i ), the tunnelling rate �12(0, 0,−1, 1) abruptly
rises at the threshold voltage V th

1 (when a new transport
channel (−1, 1) is opened). Because for V < V th

2 the
channels contributing to the positive polarization are closed,
the polarization is negative for voltages V th

1 < V < V th
2 .

For higher temperatures (kBT < Ech
i ) the tunnelling rates

(e.g. �L1(0, 0, 1, 0) and �2R(0, 0, 0,−1)) increase smoothly
as a function of bias voltage. It means, that the channels
contributing to positive polarization are also opened below
V th

2 . This leads to suppression of the negative polarization
for V < V th

2 . Moreover, for sufficiently large temperatures
(kBT is of the order of Ech

i ), the channels contributing to the
positive polarization dominate over the whole voltage range, so
the positive polarization also appears for V < V th

2 .

4. Final remarks

In the paper the dynamical (bias voltage dependent) charging
effects in the 2QDs devices in the limit of sequential tunnelling
have been analysed. We have found that the dynamical
polarization switching (DPS), i.e. inversion of the polarization
of the system, when the bias voltage increases, can occur
in these systems. The effect is a result of the competition
between tunnelling through different charge channels. If

the capacitances CL1, C2R > C12 then the threshold voltage
V th

1 < V th
2 , which means that for voltages V th

1 < V <

V th
2 the current flow through the system is mainly due to

the activation of the state (−1, 1), and in part through the
states (−1, 0) and (0, 1) (see figure 4, paths I and II). In
this case the polarization of the system is negative. For
higher voltages V th

2 < V , the tunnelling processes through the
states (1,−1), (1, 0) and (0,−1) are activated (see figure 4,
paths III and IV), which give a positive contribution to the
polarization P . These two processes compete with each other.
Depending on the relation of the interdot resistance R12 to
the tunnel resistances RL1, R2R and on relations between the
corresponding tunnelling rates �i j (n1, n2; n′

1, n′
2), the positive

or the negative polarization can dominate. For R12 � RL1, R2R

the channels with positive polarization are more strongly
activated and dominate for large voltages, which results in
polarization switching. For small R12 � RL1, R2R the
channels contributing to negative polarization dominate in the
whole voltage range.

Our analysis was performed for the symmetrical situation,
when couplings of 2QDs to the both electrodes are the
same (CL1 = C2R, RL1 = R2R). The DPS effect will
also occur in asymmetrical systems. First of all, for the
asymmetric capacitance coupling to the electrodes a nonzero
charge accumulation Q = 〈n1 + n2〉 	= 0 can appear.
Tunnelling processes presented in figure 4, contributing to
the current and polarization, are now different. For example
the path I: (0, 0) → (−1, 1) → (0, 1) → (0, 0) and
the path II: (0, 0) → (−1, 1) → (−1, 0) → (0, 0)

are not equivalent. However, according to equation (10)
both paths are activated at the same threshold voltage V th

1 ,
because the threshold voltage is determined by V th

1 ≡ V th
I =

V th
II = V th

12(0, 0; −1, 1) = −e(1/CL1 + 1/C2R)/2, and
is not sensitive to the asymmetry between CL1 and C2R.
The situation is quite different for processes with positive
polarization. The path III: (0, 0) → (1, 0) → (1,−1) →
(0, 0) and the path IV: (0, 0) → (0,−1) → (1,−1) →
(0, 0) are activated at different threshold voltages, namely at
V th

III = V th
L1(0, 0; 1, 0) = −e(1/C12 + 1/C2R)/2 and V th

IV =
V th

2R(0, 0; 0,−1) = −e(1/CL1 + 1/C12)/2, respectively. The
resistances RL1, R12, R2R (and the corresponding tunnelling
rates �L1, �12, �2R) are responsible for the activation strength
of these processes. The DPS effect can occur in this case as
well, but the voltage dependence of the polarization is more
complex.

In the above presentation we have neglected the effect
of gate voltages VG1 and VG2, which can be applied to the
QD1 and QD2. The polarization effects have been also
studied taking into account VG1 and VG2 and modifying
appropriate formulae for the voltage drops, the free energy
and the tunnelling rates. The results are qualitatively the
same as presented above. The threshold voltage V th

1 increases
with increasing gate voltage VG1 applied to the QD1, while
decreases when the gate voltage VG2 is applied to the QD2. We
have found, that the threshold voltage V th

III always decreases,
while V th

IV always increases with VG1 and VG2.
Similar polarization effects can be found in coherent

electronic transport through 2QDs [25]. The authors were not
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Figure 8. Scheme of a lateral 2QDs device defined by metal surface
electrodes 1–8. The electrodes 1 and 2 define the tunnel junction L1
in our model, whereas the electrodes 2 and 6 define the tunnel
junction 12 between the dots and the electrodes 2 and 3 define the
tunnel junction 2R. The gate electrodes 5 and 7 are used to change
the number of electrons on QDs. The electrodes 4 and 7 create the
quantum point contacts.

interested in the DPS effect, but from their analytical formulae
for the polarization, derived in the limit of weak coupling with
the electrodes (see appendix in [25]), we can conclude that the
DPS effect in that system is due to competition of the cohesive
energy, the interdot and intradot Coulomb interactions, as well
as a charge displacement due to a potential drop along the
system.

Our prediction of the DPS effect can be verified
experimentally. Figure 8 presents a scheme of the system
of 2QDs coupled with two quantum point contacts (QPCs),
which can be used as a sensible charge sensor for the
DPS effect. Similar systems were used already in charge
sensing experiments by many groups [1, 6, 32, 33].
Changes of the polarization P accompany changes of the
conductance in quantum point contacts QPC1 and QPC2.
QPCs are capacitively coupled with the quantum dots, so
charge accumulated on the quantum dots strongly influences
conductance of the QPCs. Thereby the proposed device gives
a possibility to verify our predictions concerning the dynamical
polarization switching effect.
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